А) sin²x+2sinxcosx+cos²x=0
sin²x+cos²x+sin2x=0
1+sin2x=0
sin2x=-1
2x=3π/2+2πn, n∈Z
x=3π/4+πn, n∈Z
Ответ: x=3π/4+πn, n∈Z
б) 5sin²x-3cos²x=0
5(1-cos²x)-3cos²x=0
5-5cos²x-3cos²x=0
5-8cos²x=0
8cos²x=5
cos²x=5/8
cosx=+-√(5/8)
x1=arccos(√5/8) + 2πn, n∈Z
x2=(π-arccos(√5/8)) + 2πn, n∈Z
Ответ: x1=arccos(√5/8) + 2πn, n∈Z
x2=(π-arccos(√5/8)) + 2πn, n∈Z
в)6cos²x-2sin²x=5
6cos²x-2(1-cos²x)=5
6cos²x-2+2cos²x=5
8cos²x-7=0
8cos²x=7
cos²x=7/8
cosx=+-√(7/8)
x1=arccos(√(7/8))+2πn,n∈Z
x2=(π-arccos(√(7/8)))+2πn,n∈Z
г) sin²2x-3sin2x+2=0
Пусть z=sin2x (-1≤z≤1)
z²-3z+2=0
z1=(3+√(9-8))/2=(3+1)/2=2 - не удовлетворяет условию
z2=(3-√(9-8))/2=(3-1)/2=1
sin2x=1
2x=π/2+2πn, n∈Z
x=π/4+πn, n∈Z
В 1 задаче 2 знака =?
2) к=2,5 м=5,5
3)к=7/9 м=11/9
Смотрим картинку,все понятно и просто,если есть вопросы то в ЛС
<span>1.
А) (2+x)</span>² = 4+4х+х²<span>
Б) (4x-1)</span>² = 16х² - 8х + 1<span>
B) (2x+3y)</span>² = 4х² + 12ху + 9у²<span>
Г) (х</span>²-5)² = х⁴ - 10х² + 25<span>
2.
А) y</span>²+10y+25 = (у+5)²<span>
Б) 16x</span>²-8xy+y² = (4х-у)²<span>
3.
А) (5x+2)</span>² - 20x = 25х² + 20х + 4 - 20х = 25х² + 4<span>
Б) 27x</span>² - 3(3x-1)² = 27х² - 3·(9х²-6х+1) = 27х² - 27х² +18х - 3 = 18х - 3
<span>
1.
А) (10-х)</span>² = 100 - 20х + х²<span>
Б) (3x+0,5)</span>² = 9х² + 3х + 0,25<span>
В) (-4x+7y)</span>² = 16х² + 2·(-4х)·7у + 49у² = 16х² - 56ху + 49у²<span>
Г) (x</span>²+y³)² = х⁴ + 2х²у³ + у⁶<span>
2.
А) y</span>²+100 - 20y = у² - 20у + 100 = (у-10)²<span>
Б) 49x</span>²-42xy+9y² = (7х - 3у)²<span>
3.
А) (4x-2y)</span>²+16xy = 16х² - 2·4х·2у + 4у² + 16ху = 16х² - 16ху + 4у² + 16ху =
= 16х²+4у²<span>
Б) 12x</span>⁵ - 3(x⁵+2) = 12х⁵ - 3х⁵ - 6 = 9х⁵ - 6
Возможно в последнем в условии скобка в квадрате, тогда решение такое:
12x⁵ - 3(x⁵+2)² = 12х⁵ - 3(х¹⁰ + 4х⁵ + 4) = 12х⁵ - 3х¹⁰ - 12х⁵ - 12 =
= - х¹⁰ - 12