Надо доказать, что для сторон треугольника выполнено неравенство
a²b+b²c+c²a+ab²+bc²+ca²>a³+b³+c³+2abc. Трюк, который я собираюсь использовать, придуман не мной, но он очень эффективен в подобного типа задачах. Он сводится к тому, что мы используем замены a=x+y; b=x+z; c=y+z. То, что такие положительные x, y, z существуют (и, кстати, определены однозначно) следует из возможности вписать в треугольник окружность. Стороны точками касания при этом оказываются разбиты на отрезки, которые разбиваются на три пары равных отрезков - это следует из равенства отрезков касательных. Преимущество такой замены следует из того, что в отличие от сторон треугольника, которые связаны неравенством треугольника, отрезки x, y и z могут быть любыми. После указанной замены и приведения подобных членов (конечно, это требует некоторых навыков и аккуратности) получаем неравенство
2(x³+y³+z³)+5(x²y+xy²+x²z+xz²+y²z+yz²)+12xyz>
2(x³+y³+z³)+5(x²y+xy²+x²z+xz²+y²z+yz²)+4xyz,
которое очевидно.
Объяснение:
А) f(-5)> f(2,5)
Б) f(-10) < f(-12)
Степень х положительний и больше 0 значит результат будет больше там где число больше другого по модуле вот и все
Держись, всё хорошо будет
Я так увлеклась, что даже не заметила что надо только до второго. но да ладно, проверите))
.....