Проверим нет ли точек экстремума на этом промежутке:
у`=-11sinx+13
-11sinx+13=0
-11sinx=-13
sinx=13/11 нет решений, следовательно остается проверить значения функции на концах отрезка [0; 3П\2]
у(0)=11cos0+13*0+3=11+3=14
у(3π/2)=11cos3π/2+13*3π/2+3=39π/2+3
14 меньше 39π/2+3, значит 14 есть наименьшее значение
(1 1/9 * 0.27 - 3 1/3 * 0.15) - 1500 (-0.1)^3= (10/9 * 27/100 - 10/3 * 15/100) + 1500*0.001= (3/10 -5/10) +1.5= -0.2+1.5=1.3
Решим уравнение графически:
у= arccos x определена от отрезке [-1;1] j, множество значений по оси у [0;π]
График изображен черным цветом ( см. рисунок). Пересекает ось оу в точке (0;π/2)
у=3/2 arccos х/2 отпределена на отрезке [-2;2]
-1≤x/2≤1,
-2≤х≤2
Значения функции 0≤arccos х/2≤π, а значения функции
0≤3/2 · arccos x/2 ≤3/2·π
или отрезок [0; 3π/2] по оси у.
Кривая изображена синим цветом. Пересекает ось оу в точке (0;3π/4)
Точка пересечения х=-1
Y=sin(x-2π/3)
Строим y=sinx
Сдвигаем ось оу на 2π/3 влева.