4cosx=0 |÷4
cosx=0
x=пи/2 +пи×n,nринадлежит z
<span>данное уравнение не имеет решений на множестве действительных чисел.
</span>
ОДЗ: sinx≠0 ⇒ x≠πk, k∈Z.
Умножаем на sinx≠0
sinx·(2sin²x-3cosx)=3sinx;
sinx·(2sin²x-3cosx)-3sinx=0;
sinx·(2-2cos²x-3cosx-3)=0;
sinx·(2cos²x+3cosx+1)=0
sinx≠0
2cos²x+3cosx+1=0
D=9-2·4=1
cosx=-1 или cosx=-1/2
x=π+2πn, n∈Z или х=± (2π/3)+2πk, k∈Z<span> </span>
не удовл. ОДЗ
б)
х=-(2π/3)-2π=-8π/3∈[-3π, -3π/2]
О т в е т. а) ± (2π/3)+2πk, k∈Z<span> б) </span>-8π/3∈[-3π, -3π/2]