<span>(6х-1)^2-(3-8x)(3+8x)=(10x+1)^2.
(6x-1)</span>²-(3-8x)(3+8x)-(10x+1)²=0
(6x-1)²+(8x-3)(8x+3)-(10x+1)²=0
(36x²-12x+1)+(8x-3)(8x+3)-(100x²+20x+1)=0
(36x²-12x+1)+(64x²-9)-(100x²+20x+1)=0
36x²-12x+1+64x²-9-100x²-20x-1=0
-32x-9=0
-32x=9
32x=-9
x=(-9)÷32
x=-9/32
<span>5(x+2)^2+(2x-1)^2-9(x+3)(x-3)=22
</span>5(x+2)²+(2x-1)²-9(x+3)(x-3)-22=0
5(x²+4x+4)+(4x²-4x+1)-9(x+3)(x-3)-22=0
(5x²+20x+20)+(4x²-4x+1)-(9x+1)-(9x+27)(x-3)-22=0
(5x²+20x+20)+(4x²-4x+1)-(9x²-27x+27x-81)-22=0
(5x²+20x+20)+(4x²-4x+1)-(9x²-81)-22=0
5x²+20x+20+4x²-4x+1-9x²+81-22=0
16x+80=0
16x=-80
x=(-80)÷16
x=-5
X²+x-2>0
x²-x-12≥0
x²+x-2>0 x²-x-12≥0
D=1²-4*(-2)=1+8=9=3² D=(-1)²-4*(-12)=1+48=49=7²
x=(-1-3)/2=-2 x=(1-7)/2=-3
x=(-1+3)/2=1 x=(1+7)/2=4
+ - + + - +
----------(-2)-----------(1)---------- ----------(-3)-------------(4)----------
x∈(-∞;-2)∪(1;+∞) x∈(-∞;-3]∪[4;+∞)
С учётом полученных интервалов, решением системы уравнений будет
x∈(-∞;-3]∪[4;+∞)