Пусть n и n+1 - последовательные натуральные числа,
тогда n²+(n+1)² - сумма квадратов этих чисел, а n(n+1) - их произведение.
По условию задачи можно составить уравнение:
n²+(n+1)²-n(n+1)=157
n²+n²+2n+1-157=0
n²+n-156=0
D=1-4*1*(-156)=1+624=625=25²²
n(1)=(-1+25)/2=12 - натуральное число
n(2)=(-1-25)/2=-13 - не является натуральным числом
Итак, n=12. Следовательно, n+1=12+1=13.
Ответ: 12 и 13
Розв'язання завдання додаю
1).6xy+15yz=3y(2x+5z); 2).5y-10xy=5y(1-2x); 3). -y^5-y^3+y=-y(y^4+y^2-1).