S=a×b
S -площадь,а и b -строны квадрата
Так как у квадрата все стороны равны,то получается S= 4×4=16 (см 2)
Р= 4а
Р -это периметр,а -это строны
Р = 4×4=16(см).
Так так неравенство с модулем то рассмотрим два случая
1)
2)
ответ: х∈ (-6;-3) ∪ (1;4)
Дана точка N (- 1 7/8)
Схема:
- ____К___________N______0____М___________+
на 2 5/8 ← (- 1 7/8) → на 2 5/8
Точка К - удаление влево от точки N = - 1 7/8 - 2 5/8 = - 4 7/8
Координата точки К (- 4 7/8)
Точка М - удаление вправо от точки N = 2 5/8 - 1 7/8 = 6/8 = 3/4
Координата точки М (3/4)
Ваше задание не слабо потрепало мне нервишки, тем не менее... результат есть.
1) Рассмотрим первое уравнение системы, заранее разложим подмодульное выражение на множители и будем строить кусочно наш график на разных интервалах при том или ином раскрытие модуля.
y^2-x-2=|(x+1)(x-2)|
И так. раскроем данное выражение сначала с плюсом, и строим его график на области определение (-∞;-1) ∪ (2;+∞)
y^2-x-2-x^2+x+2=0
y=|x|, данное уравнение задаёт галочку в центре координат, но нам необходима только её часть, на промежутке описанном выше, далее раскрываем модуль и строим часть график на области (-1;2)
y^2+x^2-2x+1-1-4=0
y^2+(x-1)^2=5
Данное уравнение задаёт окружность, а точнее в нашем случае часть дуги на области (-1;2) , причем легко заметить что данная дуга пересекает наш график в критических точках , а именно (-1;1) и (2;2) , и общий график функции будет выглядеть как показано на рисунке.
Теперь разберёмся с 2-ым уравнение системы.
Данное уравнение задаёт прямую, а точнее биссектрису прямоугольных координат , которая в зависимости от параметра двигается по оси ординат вверх или вниз, наша задача, её сдвинуть так, чтобы у нас было более 2-ух точек пересечения с графиком (более 2-ух решений) , это очевидно возможно , если графики функций будут расположены между точками (0;2) и неизвестной нам точки, когда прямая касается дуги нашей окружности , прямая проходит через точку ( 0;2),откуда a=
0-2=a ; a=-2
Теперь найдём тот случай когда прямая касается дуги, это сложнее, выразим из уравнение круга y. методом преобразований ясно что y=√(-x^2+2x+4) , чтобы найти абсциссу точки касание необходимо преровнять производную функции и производную нашей прямой, находим производную функции y`=(-x^2+2x+4)` = (-x+1)/√(-x^2+2x+4) , приравниваем её к производной прямой y`=(x+a)`=1
(-x+1)=√(-x^2+2x+4) , возводим обе части в квадрат и обычными преобразованиями находим, что
-4x=3
x=-3/4
Теперь найдём ординату подставь значение x в уравнение окружности.
y=√(5-(49/16))= √31/4
Теперь найдём значение параметра a=-√31/4-3/4
Таким образом легко заключить вывод, что уравнение имеет более 2-ух решение если a ∈ (-2;-√31/4-3/4) , граничные точки не включаем т.к в них система имеет 2 решения.
1) x=1872/36=52
2) z=287+119=406
3) t=16*13=208
4) m=51+42=93
5) x=8446/82=103
6) h=31-16=15
7) p=39*13=507