Домножим и разделим на cos(π/18)
(sinπ/18*cosπ/18*cosπ/9*cos2π/9)/cosπ/18=
=(sinπ/9*cosπ/9*cos2π/9)/(2cosπ/18)=
=(sin2π/9*cos2π/9)/(4cosπ/18)=
=(sin4π/9)/(8cosπ/18)=
=sin(π/2-π/18)/(8cosπ/18)=
=(cosπ/18)/(8cos(π/18)=
=1/8
Пусть исходное число было abcd, тогда записанное в обратном порядке число dcba. По разности 909 можно заметить, что такое возможно, только, если a>d. Распишем по разрядным слагаемым:
abcd=1000a+100b+10c+d
dcba=1000d+100c+10b+a
По условию:
abcd-dcba=909
1000a+100b+10c+d-1000d-100c-10b-a=909
999a-999d+90b-90c=909
999(a-d)+90(b-c)=909
111(a-d)-10(c-b)=101
Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит:
111-10(c-b)=101
10(c-b)=10
c-b=1 ⇒
a=d+1, из чего видно, что d≤8
c=b+1, из чего видно, что b≤8
Есть еще условие, что сумма цифр кратна 9.
a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант:
2(d+b)+2=18
d+b=8
Максимально возможное исходное число будет при d=8
d=8 b=0
a=9 c=1
9018-8109=909
Ответ 2781
Я использовал формулы сокращённого умножения: формулу квадрата разности и формулу разности квадратов
ОДЗ:sin x/2>=0 x/2∈[0;π]+2πn, n∈Z x∈[0;2π]+4πn,n∈Z