13 не делится без остатка на 7, значит дробь не сократимая
Найдем количество всех натуральных чисел, которые делятся на 6 из множества от 1 до 1001.
n - натуральное.
1≤n≤1001, домножим последнее неравенство на (1/6).
(1/6)≤ n/6 ≤ 1001/6;
n/6 = k - натуральное,
1/6≤k≤1001/6 = 166+(5/6),
т.к. k - натуральное, то последнее неравенство равносильно
1≤k≤166;
Таким образом среди натуральных чисел от 1 до 1001 всего 166 чисел, которые делятся на 6.
Теперь найдем количество натуральных чисел из множества от 1 до 1001, которые не делятся на 6.
1001 - 166 = 835.
Ответ. 835.
1)48-9=39 мест во втором зале 2)48+39=87 мест в двух залах ответ:85-и человекам хватит места.