Пусть
n - первое число, тогда
(n+1) - второе число
(n+2) - третье число
(n+3) - четвертое число
Найдем их сумму:
n + (n+1) + (n+2) + (n+3) = 4n+6 = 2·(n+3)
Сумма 2·(n+3) имеет вид произведения, в котором один из множителей делится на 2, это означает, что сумма четырех последовательных натуральных чисел - четное число.
Доказано.
Надеюсь понятно)))Фото вроде как четкое))
Слишком коротко. Напишите минимум 20 символов, чтобы объяснить все.
X⁴ + 2x³ - 3x² + 2x + 1 = 0
Перед нами возвратное уравнение.
Разделим его на x² (x ≠ 0):
x² + 2x - 3 + 2/x + 1/x² = 0
x² + 1/x² + 2(1/x + x) - 3 = 0
x² + 2 + 1/x² + 2(1/x + x) - 5 = 0
(x + 1/x)² + 2(1/x + x) - 5 = 0
Пусть t = (x + 1/x).
t² + 2t - 5 = 0
D = 4 + 5·4 = 24 = (2√6)²
Обратная замена:
Ответ: