Потенциал поля заряда q в точке ,отдалённой от него на r=32*10^-3 м равен φ= k*q/r . Напряженность поля точечного заряда на расстояний r равна: Е= k*q/r^2 откуда находим, что φ= E/r
φ= 1.5*10^(?) В/м / 32*10^-3 м ≈ 0,05 * 10^(?+3) В.
Ответ: φ≈ 0,05* 10^(?+3) В.
Эффект смачивания, сила притяжения внутри воды меньше чем сила притяжения между водой и плащем, поэтому вода скатывается не смачивая
Это значит,что для повышения температуры 1 кг стали на 1 градус,нужно 400 джоуль тепла
<span>Определим, сколько времени первый шарик находится в воздухе до своего приземления.
</span><span><span>Шарик, брошенный вертикально вверх со скоростью Vнач</span><span>, совершает равноускоренное движение в поле тяготения Земли, где на него действует постоянное ускорение g, направленное вертикально вниз.
</span></span><span><span>На первом этапе ускорение g направлено против начальной скороcти шарика, при этом скорость шарика уменьшается в зависимости от времени движения:
V = Vнач</span><span>– gt. (1)
</span></span><span><span>За время подъема t </span><span>под </span><span>шарик достигает максимальной высоты Н, которая подсчитывается по формуле:
H= Vнач *</span> <span>t </span>под<span>– g t</span><span>подв квадрате</span>/2. (2)
</span><span><span>Учитывая, что в верхней точке подъема скорость шарика равна 0, находим время подъема шарика до максимальной высоты:
0 = Vнач</span><span>– gt</span>под<span>, т.е. t </span>под <span>=Vнач</span><span>/ g.
</span></span>Подставляя время подъема в формулу (2), подсчитаем максимальную высоту подъема:
<span>H макс<span>= Vнач в квадрате</span><span /><span>/ g – Vнач вквадрате</span><span /><span>/ 2g = Vнач в квадрате</span><span /><span>/ 2g<span> </span>(3)
</span></span><span><span>Теперь рассмотрим второй этап движения шарика – падение с высоты H.
В этом случае ускорение шарик совершает равноускоренное движение без начальной скорости с ускорением g. Время падения шарика определяется по формуле: H = gt</span><span>пад в квадрате</span><span> /2, откуда время падения равно:
t</span>пад <span>=Корень квадр из(2Н/g)</span><span>.
Подставим сюда значение H из формулы (3) и получим:
</span></span><span>tпад <span>=корень квадратный из (2Vнач в квадрате</span><span>/2g в квадрате</span>) <span>= Vнач</span><span>/ g, т.е. время падения равно времени подъема.
</span></span><span>Полное время движения первого шарика до его приземления равно:</span><span><span>
t</span>полн <span>= t </span>под<span> + t</span>пад<span> = 2Vнач</span><span>/ g (4).
</span></span><span><span>Теперь определим, сколько времени t</span>1 <span>первый шарик поднимался на половину максимальной высоты, т.е. на высоту H/2, используя формулы (2) и (3):
</span></span><span><span>H/2= Vнач *t1– g*t1 в квадрате/2;
Vнач в квадрате<span /><span>/ 4g = Vнач*</span> t1– g*t1 в квадрате/2.
</span><span>Отсюда t</span>1 <span>=Vнач</span><span>(√2 -1)/√2 g
</span></span><span><span>Теперь осталось только определить сколько шариков успеет подбросить жонглер за то время, пока летит первый шарик:
n = t</span>полн / t1 <span>= 2 √2 / (√2 -1)</span></span>
F=3 кН=3000 Н F=mg;→ m=F./g=3000/10=300 кг.
g=10 Н/кг
m=?