-25(-8y+6)=-750
-8y+6=-750:-25
-8y+6=30
-8y=30-6
-8y=24
y=24:(-8)
y=-3
х - первое число
у - второе число
По условию разность двух чисел равна 5, получаем первое уравнение:
х - у = 5
По условию если от квадрата первого числа отнять утроенное произведение второго числа, то получится 69, .получаем второе уравнение:
х² - 3у = 69
Решаем систему уравнений:
Два ответа:
1) - 6; - 11
2) 9; 4
Использованы свойства степени
(a/b+b/a-2)*1/a-b=(a-b)^2/ab*1/(a-b)=(a-b)/ab (последнее в виде дроби
8Sin²(π/8 -2x) - Cos²(π/8 -2x) = 1/2Sin(4x -π/4)
8Sin²(π/8 -2x) - (1 - Sin²(π/8 -2x)) = 1/2Sin(4x -π/4)
Sin²(π/8 -2x) +7Sin²(π/8 -2x) - (1 - Sin²(π/8 -2x)) = 1/2Sin(4x -π/4)
Sin²(π/8 -2x) +7Sin²(π/8 -2x) - 1 + Sin²(π/8 -2x) = 1/2Sin(4x -π/4)
7Sin²(π/8 -2x) = 1/2*2Sin(2x -π/8)Cos(2x -π/8)
7Sin²(π/8 -2x) = Sin(2x -π/8)Cos(2x -π/8)
7Sin²(π/8 -2x) - Sin(2x -π/8)Cos(2x -π/8) = 0
7Sin²(π/8 -2x) + Sin(π/8 -2x)Cos(2x -π/8) =0
Sin(π/8 -2x)(7Sin(π/8 -2x + Cos(π/8 -2x)) = 0
Sin(π/8 -2x) = 0 или 7Sin(π/8 -2x + Cos(π/8 -2x)= 0 | : Cos(π/8 -2x)≠0
π/8 -2x = πn, n∈Z 7tg(π/8 -2x) +1 = 0
2x = π/8 - πn , n∈Z tg(π/8 -2x) = -1/7
x = π/16 -πn/2, n ∈Z π/8 -2x = arctg(-1/7) + πk , k ∈ Z
x = π/16 +2arctg(1/7) -2πk , k ∈Z