`•. ¸ (¯ `•. • '¯) ¸. •
<span>`• ¸ • ☆ ° '° ☆ ¸ ¸ ¸ ¸ .... ★ •' ¯` •. -.> ❥ </span>
┊ ┊ ┊ * Решение во вложении.
<span>┊ ┊ ☆ </span>
<span>┊ ★ </span>
<span>★</span>
1)область значений функции: у≥0;
2)х=(-∞;+∞);
3)корни :x²+4x-5=0;
x₁,₂=-2⁺₋√4+5=-2⁺₋3;
x₁=-2+3=1; x₂=-2-3=-5;
4)если бы не было модуля,то это график параболы,
вершина этой имеет координаты:
m=-b/2a=-4/2=-2;n=-D/4a=-(4²+4·5)/4=-9;
5)имеется модуль,поэтому строится график параболы,затем,вся часть графика,которая размещена ниже оси Ох ,строится симметрично осиОх.
График будет иметь вид:
при х=(-∞;-5)-функция убывает;
при х=(-5;-2)-функция возрастает;
при х=(-2;1)-функция убывает;
при х=(1;+∞)-функция возрастает.
Третий закон Кеплера гласит - квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет.
Проверим закон Кеплера на планете Земля.
Принято, что расстояние от планета Земля до планеты Солнце равно 1 астрономическая единица (а. е.) и также считают, что Солнце - центр нашей планетарной системы, следовательно оно относительно нас недвижимо и формула (Тз/Тс)²=(Аз/Ас)³ превращается в формулу (Тз/1)²=(Аз/1)³ ⇒ (Тз)²=(Аз)³ ⇒ Тз=√(Аз)³.
Так как на планете Земля Аз (период вращения вокруг планеты Солнце) 1 а. е. ⇒ Тз=√1³=1, то есть ≈365 земных дней.
Теперь можно вычислить "звёздный период вращения планеты Марс" вокруг планеты Солнце:
Тм=√(1,5)³≈1,837 земного года≈1,837*365≈671 земной день.
√54-√24+√150=√6·9-√6·4+√6·25=3√6-2√6+5√6=6√6
√8p-√25+√18p=√4·2p-5+√9·2p=2√2p-25+3√2p=5√2p-5
Среднее арифмитическое чисел=Сумма этих чисел/количество
Сумма десяти чисел равна 10*15=150
Сумма 11-ти чисел равна сумме прежней сумммы и нового числа 37, а количество стало 10+1=11
поэтому среднеем арифмитическое нового ряда равно
(150+37)/11=187/11=17
отвте: 17