А) 7х-6,3=0
7х=6,3
х=6,3:7
х=0,9
б)1-9х=0
-9х=-1
-9х=-1
х=9
в)-х+4,2=0,8
-х=0,8-4,2
-х=-3,4
х=3,4
г)16,2-х=13,5
-х=13,5-16,2
-х=-2,7
х=2,7
новерно так)
<span>1) например, вот такая функция: f(x)=a*(x-1/a)*(x-a)=a*x^2-(a^2+1)x+a
</span>
<span>2) Это
требование означает, что так как ветви параболы направлены вверх, то
отрицат.значения от -2 до 3 получатся, когда -2 и 3 будут точками
пересечения параболы с осью абсцисс, значит: f(-2)=0 и f(3)=0.</span>
<span>4+2b+c-1=0 и 9-3b+c-1=0
Это простая система уравнений, которая даёт b=1 и c=-5.
</span><span>3) Ветви
параболы направлены вверх, значит мы удовлетворим требованиям задачи,
если вершина параболы будет иметь координату по оси абсцисс равную 3:
-a/2=3 => a=-6.</span>
4) решение в файле.
5) чуть позже приложу
Ответ:
Объяснение:
1. D(y)=(-∞;+∞) -симметричная
y(x)=x⁷-2x⁵+x
y(-x)=(-x)⁷-2(-x)⁵-x=-x⁷+2x⁵-x=-(x⁷-2x⁵+x)=-y(x) функция нечётная
2.y'=(-5+2√2x²+81)'=(-5)'+(2√2x²+81)'=2·4x/2√2x²+81=4x/√2x²+81
y'=0 знаменатель √2x²+81≠0 при любом x, значит 4x=0 x=0
на промежутке (-∞;0) производная <0 ⇒ функция убывает
на промежутке (0;+∞) производная >0 ⇒ функция возрастает
x=0 - точка минимума
y(0)=-5+2√2·0+81=-5+2√81=-5+18=13 - наименьшее значение функции