34.4
34.5
5a²+10ab +5b² = 5(a²+2ab+b²)= 5(a+b)²= 5(a+b)(a+b)
2x²+4x+2 = 2(x²+2x+1) = 2(x+1)²= 2(x+1)(x+1)
3m²+3n²-6mn = 3(m² +n² -2mn) = 3(m² -2mn+n²)=
=3(m-n)²=3(m-n)(m-n)
8n² - 16n + 8 = 8(n² - 2n +1) = 8(n-1)² = 8(n-1)(n-1)
34.6
-3x²+12x-12= -3(x² -4x +4) = -3(x² -2*x*2+2²) = -3(x-2)²=-3(x-2)(x-2)
-2a³+20a²b -50ab²= -2a(a² -10ab+ 25b²) = -2a(a²-2*a*5b +(5b)²)=
=-2a(a-5b)² = -2a(a-5b)(a-5b)
-5p²-10pq -5q²= -5(p²+10pq+q²) = -5(p+q)²= -5(p+q)(p+q)
-36z³-24z²-4z = -4z(9z² + 6z +1)= -4z( (3a)² +2*3a*1 +1²)=
= -4z(3a+1)² = -4z(3a+1)(3a+1)
4-3x/8-5-2x/12<2 | *24
96- 9x-120-4x<48
-13x<72 |*(-1)
13x>-72
x>-5.53
|x^2-4x+1|= x+1
По свойству модуля:
x^2-4x+1= x+1
x^2-4x+1= -(x+1)
Решим оба уравнения.
1)x^2-4x+1=x+1
x^2-4x+1-x-1=0
x^2-5x=0
x(x-5)=0
x=0 U x=5
2)x^2-4x+1=-(x+1)
x^2-4x+1=-x-1
x^2-4x+1+x+1=0
x^2-3x+2=0
D= (-3)^2-4*1*2=1
x1=(3-1)/2=1
x2=(3+1)/2=2
Ответ: {0;1;2;5}