Пусть скорость катера по течению х. ⇒
(5/x)+(9*/(x-8))=1
5*(x-8)+9*x=x*(x-8)
5x-40+9x=x²-8x
x²-22x+40=0 D=324 √D=18
x₁=20 x₂=2 ∉
Ответ: скорость катера по течению 20 км/ч.
При всех значениях кроме 6 и -6
Не за что))) рассмотрим несколько случаев.Не факт ещё, что данное уравнение явлдяется квадратным, поскольку параметр содержится как раз при квадрате.1)a = 0 Тогда уравнение не является квадратным, получаем уравнение вида -5x -5 = 0Но линейное уравнение имеет лишь один корень. Значит, данное значение параметра нам не подходит.2)Рассмотрю случай, когда a ≠ 0. Тогда уравнение является квадратным. ax² - (a² + 5)x + 3a-5 = 0 Теперь вспомним, а когда квадратное уравнение имеет 2 различных корня? Тогда, когда его дискриминант больше 0. Так что, первым делом выделим дискриминант этого уравнения.a = a ; b = -(a²+5);c = 3a - 5; D = b² - 4ac = (-(a²+5))² - 4a(3a - 5) = a^4 + 10a² + 25 - 12a² + 20a = a^4 - 2a² + 20a + 25D > 0, как мы уже сказали. теперь решим неравенство.<span>a^4 - 2a² + 20a + 25 > 0
</span>
8x+6x-3≤4 14x≤7 x≤7/14=0.5