У = х + 2,
х² + у² = 10
х² + (х + 2)² = 10
х² +х² +2х+4=10
2х² +2x-6=0
D=16+48=64; √D=<span>∓8
x1=1; x2=-3 </span>⇒ y1 = 3; y2 = -1
Координаты: (1;3), (-3;-1)
Но не плохо было бы проверить моё решение)
Используем формулу сокращенного уравнения (a-b)(a+b)=a²-b²
(5х-6)(5х+6)-25х^2-8х-49=25х²-36-25х²-8х-49=-36-8х-49=-85-8х
Если х=70, то <span>-85-8х=-85-8*70=-85-560=-645</span>
!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Фото........................
Если n чётное, то его можно представить в виде чётного числа m в степени 2
Тогда выражение примет вид
(7^m) ²-(5^m)²
Пользуясь формулой разности квадратов, можно преобразовать это выражение
[(7^m)+(5^m)][(7^m)-(5^m)]
Если m больше 2х,то продолжим менять его на другое чётное число, скажем k, в степени 2 до тех пор, пока k=2
Тогда в нашем разложении мы получим множитель вида
7 ²-5 ²=24
Таким образом доказано, что исходное выражение кратно 24