Если есть еще какие-то данные, просто подставьте :)
Основные научные достижения арабских ученых относятся ко времени Раннего Средневековья. Значителен был вклад арабов в математическую науку. В VIII в. – и особенно в IX-Х вв. – арабские ученые сделали важные открытия в области геометрии, тригонометрии. Живший в Х в. Абу-л-Вафа вывел теорему синусов сферической тригонометрии, вычислил таблицу синусов с интервалом в 15°, ввел отрезки, соответствующие секансу и косекансу. Поэт, ученый Омар Хайям написал «Алгебру» – выдающееся сочинение, в котором содержалось систематическое исследование уравнений третьей степени. Он также успешно занимался проблемой иррациональных и действительных чисел. Ему принадлежит философский трактат «О всеобщности бытия». В 1079 г. он ввел календарь, более точный, чем современный григорианский. В Багдадском халифате узнали о математических открытиях индийцев в VIII в. Сразу же подхваченная арабами цифровая система стала известна в Западной Европе под названием арабской к XII в. (через арабские владения в Испании).
...................................
По известной теореме<span> <em>через любую точку пространства вне данной прямой можно провести прямую, параллельную данной прямой, и притом только одну</em>.
</span>Проекцией точки <em>а</em> на плоскость будет точка <em>а'</em>.
Через нее на данной плоскости можно провести бесчисленное количество прямых, и через каждую из этих прямых и точку вне плоскости можно провести прямую, параллельную прямой, проведенной в плоскости.
Следовательно, <em>через точку, не лежащую на данной плоскости, можно провести бесчисленное количество прямых, которые будут параллельны данной плоскости. </em>
AB²=2²+√5²=9
AB=3
S=2√5×4÷0,5=4√5