1) y^3+21*y^2+147*y+343-y^3-21*y^2>0
147y+343>0
147y>-343
y>-2.(3)
2)216-54y+18y^2-y^3+y^3-18y^2<0
216-54y<0
54y>216
y>4
Вот так. Всё написано, область определения значений - х не равен 6 и -6.
Там немного почеркано но ти разберьошся
Здесь область допустимых значений состоит только из двух чисел...
под первым корнем квадратный трехчлен --парабола, ветви вверх:
2x²-8x+6 ≥ 0
x²-4x+3 ≥ 0 корни: 1 и 3 (по теореме Виета)
решение: х ∈ (-∞; 1] U [3; +∞)
под вторым корнем квадратный трехчлен --парабола, ветви вниз:
-x²+4x-3 ≥ 0
x²-4x+3 ≤ 0 корни те же))
решение: х ∈ [1; 3]
пересечением этих двух промежутков (условия должны выполняться одновременно) будет множество из двух точек: х ∈ {1; 3}
легко проверить, что х=1 решением не является, т.к. сумма двух неотрицательных чисел (это квадратные корни) не может быть < 1-1 (меньше нуля)
остается х = 3: √0 + √0 < 3-1 это верно))
Ответ: х=3