Log3(x-2)*(x+6)=2 X^2+4x-21=0 D=100 X1=-7 X2=3
<span>при каких значениях параметра а из отрезков с длинами 1, а-3, (а/2) + 5 можно составить треугольник
ОДЗ задачи
Длины сторон должны быть больше нуля
{a-3>0
{(a/2) +5 >0
или
{ a >3
{ a > -10
Поэтому система имеет решение для всех значений
а принадлежащих (3;+бесконеч)
Треугольник можно составить если сумма длин любых двух сторон больше длины третьей стороны.
Составим неравенства
1 + a - 3 > (a/2) + 5
a - a/2 >5+2
a/2 >7
a >14
Проверим два других случая
</span><span><span>1 + a/2 +5 > a -3
a/2 < 9
a < 18
а - 3 + a/2+5 >1
(3/2)a >-1
a > -2/3
</span>Решение трех неравенств возможно для всех значений
а принадлежащих (14;18)
Решение неравенства находятся в ОДЗ
Ответ:</span>(14;18)
30a^3+35a^2b-40ab^2+5b^3
30a^5+35a^4b-40a^3b^2+5a^2b^3
30a^5+35a^5b-40a^4b^2+5a^3b^3
30a^4b^18+35a^3b^19-40a^2b^20+5ab^21
3a^8x+3.5a^2bx-4ab^2x+1/2b^3x
^число- степень числа
Sinx=√(1-cosx)/2
cosx€[-1;1]=>(1-cosx/2)≥0
ODZ x€R
{sinx≥0
{sinx=√(1-cosx)/2
1)sinx≥0
2πk≤x≤π+2πk;k€z
2)(sinx)²=(1-cosx)/2
1-cos²x=(1-cosx)/2
2-2cos²x=1-cosx
2cos²x-cosx-1=0
cosx=t€[-1;1]
2t²-t-1=0
D=1+8=9=3²
t=(1±3)/4
t1=1;t2==-1/2
а)cosx=1
x=2πn;n€Z
sinx=0
sinx=√(1-cosx)/2
0=√(1-1)/2
0=0
b)cosx=-1/2
x=±(π-π/3)+2πk
x=±2π/3+2πk
{2πk≤x≤π+2πk
{x=±2π/3+2πk
ответ
[x1=2π/3+2πk
[x2=2πn
Решение смотри во вложении.