Рассмотрим сначала частные случаи
Первый
D=0
D=(2-3a)^2-9a(a+1)=4-21a
a=4/21
x=(2-3*4/21)/(2*9*4/21/4)=5/3 попадает в интервал [0;4]
Это изолированное решение. При a>4/21 корней нет вовсе никогда. При а чуть меньше - корней сразу два.
Второй a=0 Один корень x=1/2 в заданном интервале.
Воспользуемся теперь теоремами о расположении корней квадратного уравнения
Для этого найдем
f(0)=a+1
и
f(4)=49a-7
критичные точки по а 1/7 и минус 1
Определим количество корней уравнения, попадающих в заданный интервал в этих точках
при а=1/7 один корень ожидаемо x=4 , второй внутри интервала . Как было сказано выше - корней еще два, 1/7 не попадает в решение.
при a=-1 один корень 0 , второй отрицательный , точка а=-1 попадает в решение.
условие что корни уравнения квадратного уравнения лежат по разные стороны от 0
а*f(0)<0
a*(a+1)<0 a (-1;0)
условие что корни уравнения квадратного уравнения лежат по разные стороны от 4
а*f(4)<0
a*(49a-7)<0 a (0;1/7)
про крайние точки и 0 мы уже выше выяснили.
Ответ [-1;1/7) U {4/21}
Ответ:
Решение:
Сначала упростим выражение слева:
Следовательно:
Задача решена!
An=a1+(n-1)d
Sn=(2a1+(n-1)d)*n/2
a1+4d=9
a1=9-4d
S15=(18-8d+14d)*15/2=180
(18+6d)*15=360
18+6d=24
6d=24-18
6d=6
d=1
a1=9-4
a1=5
a10=a1+9d
a10=5+9
a10=14
Ix-4I=7
1) x-4=7
x1= 11
2) x-4= -7
x=-3
сумма корней x1+x2= 11+(-3)= 8
Решение смотри на фотографии