2) log0,5_(2x+1) = - 2;
- log2_(2x+1) = - 2;
log2_(2x+1) = 2;
2x+ 1= 2^2;
2x = 3;
x= 1,5.
3)log2_(4 - 2x) + log2_3 = 1;
log2_((4-2x)*3 = 1;
log2_(12 - 6x) = 1;
12 - 6x = 2^1;
12 - 6x = 2;
- 6x = -10;
x = 10/6= 5/3.
4) log7_(x-1) = log7_2 + log7_3;
log7_(x-1) = log7_(2*3);
x - 1 = 6;
x = 7.
5)1 ≤ 7x - 3 < 49; +3
1 + 3 ≤ 7x < 49 + 3;
4 ≤ 7x < 52;
4/7 ≤ x < 52/7.
6) log2_(1 - 2x) < 0;
log2_(1 - 2x) < log2_1;
2 > 1; ⇒ 1 - 2x < 1;
- 2x < 1 - 1;
- 2x < 0; /-2 < 0;
<u>x > 0
</u> 7) lg(0,5 x - 4) < 2;
lg(0,5x - 4) <lg100;
0,5x - 4 < 100;
0,5 x < 104; * 2>0;
<u>x < 208
</u><u />8) log0,2_(2x+3) ≥ - 3; 0,2 = 1/5 = 5^(-1);
- log5_(2x + 3) ≥ - 3; /-1 <0;
log5_(2x + 3) ≤ 3;
log5_(2x+3) ≤ log5_125;
5 > 1; ⇒ 2x + 3 ≤ 125;
2 x ≤ 122;
x ≤ 61.
В первом задании не понятно условие.
<u>
</u>
Я нашёл свою ошибку, исправляю:
A) f`(x)=-sin(x-π/6)
б) f`(x)=-cos(π/4-x)
b)f`(x)=-1/(sin²(π/6+x))
г)f`(x)=1/cos²(x+π/3)
1) если а = 1/8,у = -1/6, то 16*1/8+2*(-1/6)= 2 1/3
2)2+0,3а и 2-0,3а
Если а = -9, то 2+0,3*(-9)=-0,7
Если а = 9,то 2-0,3*(-9)= -4,7
-0,7 меньше -4,7
3) а) 5а+7b-2a-8b=3a-b
б)3(4x+2)-5=12x+6-5=12x+1
в)20b-(b-3)+(3b-10)=20b-b+3+3b+10= 22b+13
4) --6*(0.5x-1.5)-4.5x-8=-3x+9-4.5x-8=-1.5x+1
если x=2/3.то 1,5*2/3+1=1 1/3
5)2p-(3p-(2p-c))= 2p-(3p-2p+c)=2p-3p+2p-c