(m+n)-(m-n)=2mn
m+n-m+n=2mn
(m+n)(n-m)=2nm
nm в квадрате=2nm
2nm=2nm
110+35+50=195км/час
195:3=65км/час
Ответ: средняя скорость автомобиля 65 километров в час.
Можна проверить
330+105+150=585(км) автомобиль проехал
330:110=3часа - ехал первый участок
105:35=3часа - ехал второй участок
150:50=3часа - ехал третий участок
3+3+3=9часов был в дороге
585:9=65км/час скорость автомобиля
У меня получилось так
log_(8x^2-23x+15) (2x-2) <= 0
Во-первых, область определения
{ 8x^2-23x+15 > 0
{ 8x^2-23x+15 =/= 1; то есть 8x^2-23x+14 =/= 0
{ 2x-2 > 0
Решаем
{ (x - 1)(8x - 15) > 0
{ (x - 2)(8x - 7) =/= 0
{ x > 1
Получаем
{ x = (-oo; 1) U (15/8; +oo)
{ x =/= 2; x =/= 7/8
{ x > 1
Область определения:
x = (15/8; 2) U (2; +oo)
Рассмотрим случай
log_(8x^2-23x+15) (2x-2) = 0
2x - 2 = 1
x = 3/2 = 12/8 < 15/8 - не входит в область определения.
Рассмотрим случай
{ 8x^2-23x+15 < 1; то есть 8x^2-23x+14 < 0
{ log_(8x^2-23x+15) (2x-2) < 0
Решаем
{ (x - 2)(8x - 7) < 0
{ 2x-2 > 1
Получаем
{ 7/8 < x < 2
{ x > 3/2
{ x = (15/8; 2) U (2; +oo)
Решение:
x = (15/8; 2)
Рассмотрим случай
{ 8x^2-23x+15 > 1; то есть 8x^2-23x+14 > 0
{ log_(8x^2-23x+15) (2x-2) < 0
Решаем
{ (x - 2)(8x - 7) > 0
{ 2x-2 < 1
Получаем
{ x = (-oo; 7/8) U (2; +oo)
{ x < 3/2 = 12/8
{ x = (15/8; 2) U (2; +oo)
Решений нет
Ответ: x = (15/8; 2)
Ответ:
Объяснение: 1) S=∫₋₃⁻¹(-x²-2x+5-(-x²-6x-7))dx+∫₋₁¹(-x²-2x+5-2x)dx=
=∫₋₃⁻¹(4x+12)dx+∫₋₁¹(-x²-4x+5)dx=4(1/2x²+3x)║₋₃⁻¹+(-1/3x³-
-4·1/2x²+5x)║₋₁¹=4·((1/2·(-1)²+3·(-1)-1/2·(-3)²-3·(-3))+(-1/3·1³-2·1²+5·1-
-(-1/3)·(-1)³+2·(-1)²-5·(-1))=4·(1/2-3-9/2+9)+(-1/3-2+5-1/3+2+5)=8+9-2/3=
=16+1/3 (ед²)
2) S=∫₋₁¹(2x+5-x²+2x)dx+∫₁³(x²-6x+12-x²+2x)dx=∫₋₁¹(-x²+4x+5)dx+
+∫₁³(-4x+12)dx=((-1/3)x³+4·1/2·x²+5x)║₋₁¹+((-4)·1/2·x²+12x)║₁³=
=(-1/3+2+5-1/3-2+5)+(-18+36+2-12)=10-2/3+8=17+1/3 (ед²)