<span>0,3(8-3у)=3,2-0,8(у-7)
2.4-0.9у=3.2-0.8у+5.6
-0.9у+0.8у=5.6+3.2-2.4
-0.1у=6.4
у=-64</span>
<span>1)y=(2x+5)(x^2+4)</span>
<span>y' = (2x+5)' * (x^2+4) + (2x+5)*(x^2+4)' = 2*(x^2+4) + (2x+5)*(2x) = 2x^2 + 8 + 4x^2 + 10x= 6x^2 + 10x + 8</span>
<span>
</span>
<span><span>2)y=((x^3)-1)/(2x+3)</span></span>
<span><span>y' = ((3x^2)*(2x+3) - (x^3-1)*(2x+3))/(2x+3)^2</span></span>
<span><span>
</span></span>
<span><span><span>3)y=x^-2*корень 3 степени из x= x в степени -5/3</span></span></span>
<span><span><span>y'= -5/3 * x в степени -8/3</span></span></span>
<span><span><span>
</span></span></span>
<span><span><span><span>4)y= корень((4x^2)+5)</span></span></span></span>
y'=(1/2*корень((4x^2)+5))*8x
Решение смотрите в приложении
Y=(x+2)^2
Парабола, сдвинутая на два единичных отрезка влево, значит:
A(-2;0) - вершина параболы.
=(60/160 - 8/160) * 10/1=52/160 * 10/1 = 52/16 = 3,25