<span>Условие должно быть таким: Из точки А к данной плоскости альфа проведены перпендикуляр АА1 и две наклонные АВ и АС.
СА1=4, угол АВА1=30°, угол АСА1=60°, а угол между наклонными 90°.
</span><span>Найти расстояние между основаниями наклонных.
Решение.
Из прямоугольного треугольника АСА1:
tgC=AA1/A1C (отношение противолежащего катета к прилежащему). Тогда АА1=А1С*tg60° = 4√3. АС=√(АА1²+А1С²)=√(48+16)=8. (Пифагор)
Из </span><span>прямоугольного треугольника АВА1:
АВ=2*АА1 = 8√3 (АА1 - катет против угла 30° и равен половине гипотенузы АВ).
</span><span>Из <span>прямоугольного треугольника АВС (<ВАС=90° - дано): ВС=√(АВ²+АС²)=√(64+192)=16.
Ответ: расстояние ВС между основаниями наклонных равно 16.</span></span>
Описанный четырёхугольник – это четырехугольник, имеющий вписанную
окружность. Для того, чтобы четырёхугольник был описанным, необходимо и
достаточно, чтобы он был выпуклым и имел равные суммы противоположных
сторон: a + c = b + d.
Решение:
14+14=28 (см)