M=100 кг h=0.5 м Aз=1000 Дж η=?
===
η=Ап/Аз=m*g*h/Аз=100*10*0,5/1000=0,5 (50%)
=================================
Выпуклая линза – собирающая, т.е. собирает все лучи в одной точке. Вогнутые – рассеивающие, соответсвенно лучи расходятся в разные стороны.
<em>Выпуклая линза, собирая лучи в одной точке, может поджечь что-либо </em>
Тк процесс изобарный, то действуем по формуле
V1/T1=V2/T2
V1*t2/T1=V2
t2=V2*t1/v1
t2= 2*300(27+273=300 (по кельвину))
Т2 = 600К
Работа газа при изобарном процессе
A=P(V2-V1)
A=1.5P
дальше в зависимости от давления
если давление атмосферное (Р=10^5 Па)
то работа равна 1.5*10^5 Дж
<span> Для замкнутой системы тел момент внешних сил всегда равен нулю, так как внешние силы вообще не действуют на замкнутую систему. </span>
<span> Поэтому </span>, то есть или <span> </span>Закон сохранения момента импульса<span>: момент импульса замкнутой системы тел относительно любой неподвижной точки </span>не изменяется<span> с течением времени. </span>
<span> Это один из фундаментальных законов природы. </span>
<span> Аналогично для замкнутой системы тел, вращающихся вокруг оси </span>z: отсюда или .<span> Если момент внешних сил относительно неподвижной оси вращения тождественно равен нулю, то момент импульса относительно этой оси не изменяется в процессе движения. </span>
<span> Момент импульса и для незамкнутых систем постоянен, если результирующий момент внешних сил, приложенных к системе, равен нулю. </span>
Очень нагляден закон сохранения момента импульса в опытах с уравновешенным гироскопом – быстро вращающимся телом, имеющим три степени свободы (рис. 6.9).<span> <span>Рис. 6.9 Рис. 6.10</span></span><span> Используется гироскоп в различных навигационных устройствах кораблей, самолетов, ракет (гирокомпас, гирогоризонт). Один из примеров навигационного гироскопа изображен на рисунке 6.10. </span>
Именно закон сохранения момента импульса используется танцорами на льду для изменения скорости вращения. Или еще известный пример – скамья Жуковского (рис. 6.11).
Рис. 6.11
<span> Изученные нами законы сохранения есть следствие симметрии пространства-времени. </span>
<span> Принцип симметрии был всегда путеводной звездой физиков, и она их не подводила. </span>
<span> Но вот в 1956 г. Ву Цзянь, обнаружил асимметрию в слабых взаимодействиях: он исследовал β-распад ядер изотопа </span>СO60<span> в магнитном поле и обнаружил, что число электронов, испускаемых вдоль направления магнитного поля, не равно числу электронов, испускаемых в противоположном направлении. </span>
<span> В этом же году Л. Ледерман и Р. Гарвин (США) обнаружили нарушение симметрии при распаде пионов и мюонов. </span>
<span> Эти факты означают, что законы слабого взаимодействия не обладают зеркальной симметрией.</span>