Главный тезис Л.Н. Толстого, что человек – это дробь: Ч/З, где числитель Ч – это его человеческая сущность, а знаменатель З – то, что он о себе думает. Лев Николаевич акцентирует внимание на том, что, чем больше З, тем меньше дробь.
Да, действительно. Из двух дробей с одинаковыми Ч меньше та, у которой З больше. Так, 7/8 > 7/9 >> 7/ 900 . Мы знаем, что при З → ∞ дробь (Ч/З) → 0. Т.е. излишнее, а тем более, маниакальное, самомнение превращает в ничто человеческую личность. И даже большой Ч уже не может спасти ситуацию. Дробь-то ничтожно мала!
Но это утверждение великого писателя не так однозначно. Оно дает богатый материал для рассуждений. А жизненные наблюдения подкреплены математикой!
Если Ч>З, т.е. человек недооценивает себя, то это неправильно. Неправильная дробь, так говорит нам математика.
Робость сделать что-то не то, ощущение, что другие лучше него, мешает человеку и вредят обществу в целом. Ведь человек не может раскрыть свой потенциал и принести человечеству то, что мог бы, если бы верил в себя. Такого человека надо поддержать, повысить его самооценку, чтобы дробь стала приближенной к единице. Правда, при Ч=З дробь тоже неправильная, но зато это адекватная человеческая единица.
А что будет, если у человека З = 0? Таких людей не существует. В этом едины и жизнь, и математика. Если человек не думает о себе, значит, он просто не может думать.
В психологии есть тесты, где мнение человека о себе и своих способностях сравнивается с мнением окружающих на этот счет. Полученный коэффициент называется уровнем притязаний. Он обратен предложенной Л.Н.Толстым дроби, но его широкое использование еще раз говорит о гениальности писателя, угадавшего методику оценки личности.
Да и каждый человек, прочитавший высказывание, хочет, думаю, знать, а какой же дробью он является?
4х-х равно -51,далее 3х равно -51,х равен -51:3,а дальше сам(а) подели
Ок, поделим 210/765 на 5, будет 42/153, теперь делим на 3, будет 14/51
1000×5=5000(руб)-стоит шкаф;
5000+1000=6000(руб)-стоят стол и шкаф вместе.
Это невозможно, так как мы не можем получить нечётное число, используя знаки + и -.