Обозначим площадь грани кубика за а. Пусть в ряду имеется х кубиков. Тогда, у крайнего левого и крайнего правого в площади поверхности учитываются 5 сторон, у остальных - 4 стороны. Находим площадь поверхности: для крайних двух кубиков: для остальных (х-2) кубиков: общая: Пусть после добавления кубиков их устало у штук. Общая площадь поверхности в этом случае будет равна . По условию она увеличилась в k раз. Получаем равенство:
Как видно и выражение и выражение при делении на 4 дает остаток 2. Однако при четном возникает противоречие:
- левая часть кратна 4, в то время как правая по-прежнему при делении на 4 дает остаток 2. Значит k не может быть четным числом, и значение 6 недопустимо. <span>Ответ: 6</span>