Объяснение:
(5х^6 •у^2)^3 •(-х^8 •у^7)^2 :(-0,2х^15 •у^10)^2 -10х^4=125х^18 •у^6 •х^16 •у^14 ÷0,04х^30 •у^20 -10х^4=3125х^(18+16-30) •у^(6+14-20) -10х^4=3125х^4 •у^0 -10х^4=3125х^4 -10х^4=3115х^4
(-2а^10 •b^20)^2 ÷(-a^2 •b^3)^3 ÷(-2a^5 •b^24)^2=(4a^20 •b^40) ÷(-а^6 •b^9) ÷(4a^10 •b^48)=-a^(20-6-10) •b^(40-9-48)=-a^4 •b^(-17)=(-a^4)/b^17
(х/у)^5 •((х^4)/у^3)^3 •((х^8)/у^10)^2 •(х/у)^5=(х^(5+12+16+5))/у^(5+9+20+5)=(х^38)/у^39
1
x=п/6
y=-п/6
вроде так!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) cos3x=√2/2
3x= (+∨-)π/4+2πK
X=(+∨-)π/12+2/3*πK
б) 3cos²x+cosx-4=0
3t² +t -4=0
t₁=(-1-sqrt(1-4*3*(-4))/(2*3) =(-1-7)/6= -4/3
t₂=(-1+sqrt(1-4*3*(-4))/(2*3) =(-1+7)/6= 1
cosx = -4/3 <-1
cosx =1 ==>x=2π*k ; k∈Z (любое целое число)
в) √3cos2x+sin2x=0
2(√3/2cos2x + 1/2sin2x)=0
2(cosπ/6*cos2x + sinπ/6*sin2x)=0
2cos(2x -π/6) =0
2x -π/6=π/2 +π*k
2x=2π/3+π*k
x=π/3+π/3*k ; k∈Z (любое целое число)
2) sinx >√2/2
π/4<x< π-π/4 π/4<x< 3/4π
2π*k+π/4<x< 3/4π +2π*k
x∈ (2π*k+π/4x ; 3/4π +2π*k )
8х+13х=121
21х=121
х=121/21
х=5 16/21
Ответ:5 16/21