<u>Площадь трапеции = полусумма оснований * высота</u>
основание 1 = 12 (верхнее)
основание 2 = 70+44=114 (нижнее)
высота = 24
следовательно:
Пл. трапеции = (12+114)*24= 126*24=3024
ABCD-правильная трапеция, ВС-меньшее основание, тогда АВ=ВС=СD. Из точки В проведем высоту ВН. Диагональ АС делит высоту на отрезки ВО=15см, ОН=12см.Обозначим АВ=х и выразим АН=√(x^2-729). Треуг. АВС-равнобедренный, так как АВ=ВС, значит угол ВАС=ВСА. Теперь рассмотрим треуг. АНО и СВН. Они прямоугольные. Угол ВСО=НАО как накрест лежащие при параллельных AD и ВС и секущей АС, следовательно треуг. АНО и СВН подобные. Стороны треуг. АНО относятся к соответствующим сторонам треуг. СВН как 15/12 или 5/4.ВС/АН=х/√(x^2-729)=5/45*√(x^2-729)=4x (чтобы избавиться от корня, возведем обе части в квадрат)25*9(x^2-729)=16x^225x^2-16x^2-18255=09x^2=18255x^2=2055x=45AB=BC=CD=45смНайдем большее основание AD.АН=√(x^2-729)=√(2025-729)=36см<span>AD=45+36*2=117см</span>
В параллельных прямых пересеченных секущей односторонние углы в сумме дают 180 градусов. 180-65=115 градусов
ответ:115 градусов
АВС, ВН - высота, АК - биссектриса, т.М - пересечение ВН и АК. ВМ/МН = 13/12,
R = 26.
Найти: а = ВС = ?
Решение:
Из пр. тр-ка АВН по св-ву биссектрисы получим:
АН/АВ = МН/МВ = 12/13
Но АН/АВ = cosA = 12/13
Следовательно:
sinA = кор(1-144/169) = 5/13
Выразим сторону а тр-ка АВС через радиус описанной окружности и противолежащий угол:
a = 2RsinA = 2*26*5/13 = 20
Ответ: 20 см.
При угле 60 град. Получаем равносторонний треугольник ОСД со сторонами равными R, и ЕД = R/2 = 3 см.