Раыоевлннабг рангсге9вше9вшевшевщевщчшкчкггкч
ОДЗ x- любой
вся числовая ось
Поскольку парабола и прямая имеют общую точку пересечения, то приравняю эти два равенства:
6x+b = x² + 8
x²-6x+8-b=0
Поскольку прямая должна касаться параболы,(то есть они имеют ровно одну общую точку), то данное квадратное уравнение должно иметь один корень(одну абсциссу точки касания, так как точка у нас одна). А такое возможно лишь при условии, что дискриминант данного уравения равен 0. Выделим сначала дискриминант из данного квадратного уравнения:
a = 1;b = -6;c = 8-b
D = b²-4ac = 36 - 4(8-b) = 36 - 32 + 4b = 4 + 4b.
D = 0
4+4b = 0
4b = -4
b = -1
Значит, при b = -1 прямая касается параболы.
1) В соответствии с теоремой об остатке а = 23k + 21, где k - частное (целое число).
Тогда a^2 - 2a + 6 = (23k + 21)^2 - 2(23k + 21) + 6 = 23*(23k^2 + 40k + 17) + 14.
Следовательно, искомый остаток равен 14.
Ответ: 14.