В прямоугольном треугольнике АТВ (АТВ = угол DTB =90°, так как опирается на диаметр DB SinA = ВТ/АВ = 9√3/12√3= 3/4 = 0,75. По таблице синусов находим, что это угол 48,6°
В треугольнике DTO угол TDO=DTO (т.к. DTO - равнобедренный OD=OT =R) и = ABD (т.к. DAB - равнобедренный - половина ромба), а тогда угол TOD = DAB = 48,6°.
Площадь сегмента DT по формуле Sdt = R²/2(π*A°/180° - SinA) = 1/2*8,48²(3,14*48,6/180 -0,75) ≈ 3,5. Но таких сегментов четыре, значит площадь части круга, расположенного вне ромба равна 3,5*4 = 14.
Рисунок был бы кстати. Попробуй состряпать там прямоугольный треугольник так, чтобы медиана стала гипотенузой. Найдешь по теореме Пифагора.
Найдём ДС из пропорции ДС : ВС = 1:2. ДС = 0,5 ВС = 0,5· 6 = 3(см)
Тогда АС = АД + ДС = 5 + 3 = 8(см)
Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника, поэтому
АД : АВ = ДС : ВС. Отсюда АВ = АД · ВС : ДС = 5 · 6 : 3 = 10(см)
Периметр треугольника АВС равен:
Р(АВС) = АВ + ВС + АС = 10 + 6 + 8 = 24(см)
Ответ: 24см
Искомую высоту найдем из площади треугольника АВО.
Формула площади треугольника
<em> S=a•h:2</em>, где h- высота, а - сторона, к которой она проведена.
следовательно, АВ•OO1=BO•AO2
откуда АО2=АВ•OO1:BO
AO2=14•18:21=12 см
Ответ:
Найдём оставшийся кусочек дуги
Вся окружность у нас 360°=>360-64-92=204
Угол АВС-это вписанный угол=>он равен половине дуги на которую опирается 204:2=102