Дано: ΔАВС - прямоугольный, ∠С=90°, АВ=25 см, ВН=1,96 см. Найти АС, ВС.
Проведем высоту СН, ВН - проекция ВС на АВ.
АН=25-1,96=23,04 см.
По свойству высоты, проведенной к гипотенузе, СН²=АН*ВН=23,04*1,96=45,1584.
ВС=√(СН²+ВН²)=√(45,1584+3,8416)=√49=7 см.
АС=√(25²-7²)=√(625-49)=√576=24 см.
Ответ: 7 см, 24 см.
Из подобия имеем AO/OD=BO/CO откуда следует первое соотношение
CO+OB=CB
BO/CO=3/5 CO+3/5CO=64 8/5CO=64
CO=(64/8)*5=40
BO=64-40=24