Наименьшее значение функции может быть либо в точке минимума, если она есть на интервале, либо на краях интервала.
найдем экстремумы функции <span>f(x)=4/(x-1)+x , которые надо искатьв точках где производная обращается в 0. f'(x)=0
</span>
=0
(x-1)² =4
x₁=-1 x₂=3
x₂ не попадает в интервал <span>[-2:0]
поэтому минимум надо искать среди трех точек: -2, -1 и 0
f(-2)=4/(-2-1) -2=-4/3-2=
f(-1)=4/(-1-1)-1=-2-1=3
f(0)=4/(-1)-1=-5
Ответ: минимум в точке x=0
</span>
500 см = 5 м
S =4*5 = 20 м кв.
Соответственно, правильный последний ответ.
1 способ 128970-3265*8-2735*8=80970(кг) . 2 способ 128970-8*(3265+2735)=80970(кг)
3х5=15 м
Ответ: 15 м ткани было в рулоне изначально.
Всего 80 лоскутов ткани, из них 69 шелковых. соответственно, чтобы вычислить кол-во бумажных мы вычитаем из общего кол-ва лоскутов шелковые:
80 - 69 = 11 - бумажных лоскутов
теперь вычислим, насколько больше шелковых. для этого вычислим из шелковых лоскутов кол-во бумажных:
69 - 11 = 58
ваш ответ: на 58 шелковых лоскутов больше, чем бумажных