Ответ: 60°; 15°.
Объяснение:
16) из уравнения окружности следует, что радиус окружности =
V18 = 3V2 = CA = CB
радиус, проведенный в точку касания, перпендикулярен касательной, ---> треугольники СВО и САО -это равные прямоугольные треугольники (по гипотенузе и катету);
СО -биссектриса угла АОВ, т.е. достаточно найти острый угол прямоугольного треугольника (например, СОА) и умножить на 2...
гипотенуза СО -это диагональ квадрата со стороной 6, СО=6V2;
sin(COA) = 3V2 / (6V2) = 1/2
угол СОА = 30°
угол ВОА = 60°
10) прямая у=х -это биссектриса первого и третьего координатных углов, т.е. угол наклона прямой ОВ к оси ОХ 45°; вторая прямая имеет угловой коэффициент k=V3 -это тангенс угла наклона прямой к оси ОХ (можно построить соответствующие прямоугольные треугольники), т.е. угол наклона прямой ОА к оси ОХ 60°;
искомый угол = разности этих углов 60°-45°=15°.
3хдлина
х ширина
3х^2=27
х^2=9
х=3
длина 3*3=9
Р=2(9+3)=24
OD = OA = ОЕ = ОС как радиусы,
∠DAO = ∠ECO = 60° так как треугольник АВС равносторонний,
значит ΔADO и ΔСЕО так же равносторонние, ⇒
AD = EC = 1/2 AC = 9 см.
Значит DE - средняя линия треугольника АВС,
DE = 1/2 AC = 9 см
Bc параллельно АД
а параллельно в
все это потому что есть накрест лежащие углы и они равны