A/b=1,5
a=1,5*b
1)b/(1,5*b)=1/1,5=2/3
2)b/(4,5b+2b)=1/6,5=2/13
3)(1,5b+2b)/(1,5b+b)=3,5/2,5=35/25=7/5
Половина круг -это 50%. на диаграмме Австрии больше половины круга, значит там больше половины католики
Если остальные мячи весили одинаково, то
взвешиваем 2 мяча на одной стороне и 2 мяча на другой
если они равны, то самый тяж. мяч пятый
если не равны, то берём те 2 мяча которые весят больше и взвешиваем их
<span>тот мяч который весит больше и есть самый тяж.</span>
Если не оговорено противное, операции рассматриваются наиболее естественные.
1. Сложение и умножение, естественно, предполагаются покоординатные. Тем самым наше множество является подмножеством линейного пространства R^2. Поэтому мы должны думать только о том, чтобы линейные операции не выводили из нашего множества.
M={(x;y}: x-y-5=a}={(y+5+a;y}, то есть первая координата должна быть на (5+a) больше второй. Однако, умножив такую пару на 0, мы получаем пару (0;0). Для нее равенство 0-0-5=a выполняется только если a= - 5. А тогда M={(y;y)}, что, естественно, является линейным подпространством в R^2 и⇒ само является линейным пространством
(сумма пар с равными координатами снова пара с равными координатами. То же самое с умножением на число.
2. Умножая функцию, лежащую в нашем множестве, на 0, получаем нулевую функцию, которая всюду (а значит и в точке 3) равна нулю. Значит должно выполняться условие a-4=0; a=4. Таким образом, теперь имеем функции, равные нулю в точке 3, а тогда их сумма и произведение на число снова равны 0 в точке 3.
3. Здесь M является подмножеством в R^3. Аналогично п.1, умножая любой элемент из M на 0, получаем нулевой набор. Он удовлетворяет данной системе уравнений, если 0-0=0 (выполнено) и 0-2·0+1=5·0-a, то есть a= - 1. Система уравнений превращается при этом в линейную ОДНОРОДНУЮ систему
<span>x-2y=0; x-2y-5z=0,</span>
для которой множество решений конечно является линейным пространством.
Ответ: 1. a= - 5; a=4; a= - 1
Замечание. Необходимо каждый раз проверять, что множество непусто. В этих трех случаях непустота очевидна (в первом и третьем примерах там лежит нулевой набор, во втором - нулевая функция)