Это правда очень легко. надо вспомнить, что tg(π/3)=√3 и ctg(π/4)=1, поэтому arctg√3= π/3 и arcctg1=π/4
теперь подставим это в пример
24/π(arctg√3+arcctg1)=24/π(π/3+π/4)=24/3+24/4=8+6=14
Cos2a=2cos^2(x)-1=> 2cos^2(x) -1 = 1/3 => cosx = sqrt(2/3), из основного тригонометрического тождества мы находим синус, sin^2(x) = 1-cos^2(x)= 1/3=> sinx =sqrt(1/3). по формуле tg(x+Pi/4) = (tgx+tg45)/ 1-tgx*tg45. tg 45=1
(sqrt(1/3) * sqrt(3/2) +1 ) / (1- sqrt ( 1/3 * 3/2))=> (sqrt(1/2) +1 ) / 1- sqrt(1/2)=>Домножив на сопряженные , дабы избавить знаменатель от иррациональности. домножим на 1+sqrt ( 1/2 ) => (1+sqrt(1/2)^2 / 1- 1/2=>
2*(1+sqrt(1/2) ) ^2= 2* ( 1+ 1 + 1/2) => 2* ( 2+1/2 ) => 2* ( 5/2) = 5. SQRT - это квадратный корень
Построим два графика у=|4x+3| и y=5a+3 и найдем, при каких значениях а эти графики имеют пересечения.
Это будет происходить, если 5а+3≥0, то есть при а≥-0,6
5x-5=0
x=5+5
x=10
10=10 (Мы так решали может быть у вас изменилось что то ответ все правильно)