150 умножить 2 =300.Площадь треугольника 300.
На первом этапе применяем теорему о том, если плоскость проходит через прямую, параллельную второй плоскости и пересекает ее, то линия пересечения параллельна первой прямой.
Конечно верно. Предположим противное. Например, прямая лежащая в одной из паралл. плоскостях не паралл. второй плоскости. Значит она пересекает вторую плоскость ,а значит и плоскость которой пренадлежит данная прямая пересекает ее , а это противоречит условию. Значит утверждение верно.
Как-то так...............
A
|\ \
| \ \
| \ \
| \ \
| \ \
| \ \
C------- B
H
Не очень ровный рисунок, но позволяет увидеть, где какие буквы стоят.
АН-биссектриса, следовательно делит угол А пополам, тогда
угол САН= углу ВАН = 30°. угол АВС = 180°-90°-60°=30°
Рассмотрим треугольник АВН.
Так как в нем угол А= углу В ( = 30°), то он является равносторонним, следовательно АН=НВ=12 см
Нам нужно найти катет СН, так как против большего угла лежит больший катет.
Тот же треугольник АВН. Находим угол Н, он равен 180°-30°-30°=120°.
Рассмотрим углы АНС и АНВ, они смежные, следовательно угол АНС=180°-120°=60° ( это угол Н в треугольнике АНС)
Рассмотрим треугольник АНС.
Угол А в нем равен 30°, а гипотенуза = 12 см, тогда, так как против угла =30° лежит катет, равный половине гипотенузы находим катет СН, он равен 12:2=6 см
Треугольник АВС:
Катет СВ = СН + НВ = 6 см + 12 см = 18 см
Ответ: 18 см