Дана функция
f(x) = x² - 8x + 12
Производная функции
f'(x) = 2x - 8
Приравняем производную к нулю
2х - 8 = 0
2х = 8
х = 4 - точка экстремума
Знаки производной
на интервале (-∞; 4) f'(x) < 0 → функция убывает
на интервале (4; +∞) f'(x) > 0 → функция возрастает
в точке х = 4 производная меняет знак с минуса на плюс, значит это точка минимума.
Ответ: f(x)↓ на интервале (-∞; 4); f(x)↑ на интервале (4; +∞); х = 4 - точка минимума
Чтобы найти периметр треугольника нужно сложить все его стороны т.е.
Р = а+б+с
значит Р = 2 + 6 + 9 = 17
10, потому что минимальное значение у =1, тогда 3х=30, х=10