Володя расставил несколько (возможно 0) шахматных фигур на доску 8×8.Леня заметил что в каждом квадрате 2×2 стоит одинаковое кол
ичество фигур.А Влад заметил что в каждом прямоугольнике 3×1(или1×3) стоит одинаковое количество фигур.Сколько фигур было выставлено на доску?(Укажите все варианты и докажите что других нет)
Разобьем доску двумя способами (на квадраты 2x2 и на прямоугольники 1x3 (3x1) + 1 клетка), как показано на рисунке. Пусть в каждом квадрате 2x2 ровно n фигур, а в каждом прямоугольнике 1x3 (3x1) ровно m фигур. Тогда при первом разбиении получается (8 * 8) / (2 * 2) * n = 16n фигур, а на втором (8 * 8 - 1) / 3 * m = 21m либо 21m + 1 фигур (+1 за счет одной клетки, не попавшей ни в один из прямоугольников из 3 клеток). Переберем все возможные значения m (0, 1, 2 и 3) и подберем для них все возможные значения n.
m = 0: 16n = 0 либо 16n = 1. Получаем n=0, а значит ни одной фигуры не выставлено.
m=1: 16n=21 либо 16n=22. Такого быть не могло (ни 21, ни 22 не делятся на 16)
m=2: 16n=42 либо 16n=43. Такого быть также не могло (ни 42, ни 43 не делятся на 16)
m=3: 16n=63 либо 16n=64, откуда n=4 и вся доска заставлена фигурами (их 64). Больше вариантов нет.
И 0, и 64, очевидно, подходят (во всех клетках одинаковое количество фигур, а значит в любых объединениях клеток, содержащих одинаковое число клеток, содержится одинаковое количество фигур).