S= h*((сумму оснований)/2)
s=8+18/2*12=156
ΔAKE = ΔKDC по двум сторонам и углу между ними ⇒ KD = KE ⇒
⇒ ∠KDE = ∠KED ⇒ ∠ADK = ∠KEC ⇒ ΔAKD = ΔKEC по двум сторонам и углу между ними ⇒ AD - BC ⇒ ΔABD = ΔEFC по стороне и двум прилегающим углам ⇒ AB = FC ⇒ BK = KF, что и требовалось.
5cм-3см=2см
Ответ : длина МС - два сантиметра
1) Пусть средняя линия будет KH
Проведем высоту BT к основанию AD
угол ABT = 30 градусов, поэтому AT = 6
Проведем высоту CJ к основанию AD
JD = CD так как треугольник CJD - равнобедренный
Средняя линия трапеции: 1/2(BC+AD) = 1/2(8 + 8+ 10 + 6) = 1/2 * 32 = 16
2) Назовем данную трапецию ABCD, где BC, AD - основания, проведем две высоты BK, CL, тогда длина AK будет равна 5 см, а длина KD будет равна 12 см, тогда длина LD будет равна длине AK и будет равна также 5 см.
KL = KD - LD = 12 - 5 = 7 см.
Так как длина KL равна длине меньшего основания, тогда длина BC также равна 7 см, можем найти среднюю линию трапеции, если BC = 7 см, AD = 17 см.
(BC + AD) / 2 = (7 + 17) / 2 = 12 см.
Ответ: длина средней линии 12 см.