На самом деле задана не просто точка, а ДВА отрезка, на которые биссектриса делит (заданную) сторону.
Вот как можно строить. Где-то на плоскости строим угол, равный заданному. От его вершины откладываем вдоль одного луча один из отрезков, на которые биссектриса делит (заданную) сторону, а вдоль другого - другой (откладываем от вершины, конечно).
Концы отрезков соединяем (вдоль этой прямой будет располагаться противоположная строна).
Получился треугольник, подобный искомому.
Если построить биссектрису угла, она разделит противоположную (только что построенную) сторону в нужной пропорции.
Фиксируем точку пересечения (точку, где биссектриса пересекается с построенной прямой) и от неё в разные стороны вдоль построенной прямой откладываем опять те же отрезки (не перепутать куда какой - скажем, меньший в сторону где меньший и наоборот).
Теперь осталось из полученных точек (концов отрезков) провести прямые, параллельные сторонам заданного угла до пересечения.
Построение закончено.
Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон,то треугольник прямоугольный
S=1/2*10*2* sin45=10*корень из 2/2=5 корней из 2
Пусть основания x, 3x.
Трапеция описана, тогда суммы длин противоположных сторон равны, сумма боковых сторон x+3x=4x.
Трапеция равнобедренная, тогда каждая боковая сторона 4x/2=2x.
Опустим высоту из вершины к большему основанию. Получим прямоугольный треугольник с катетом x и гипотенузой 2x.
Высоту в этом треугольнике можно найти по теореме Пифагора, h=x*sqrt(2^2-1^2)=x*sqrt(3)
Площадь трапеции S = полусумме оснований * высота = (x + 3x)/2 * xsqrt(3) = 2x^2 * sqrt(3)
S = 2x^2*sqrt(3)=sqrt(3); 2x^2=1; x=1/sqrt(2)
Боковая сторона = 2x = 2/sqrt(2) = sqrt(2)
tg(180°-α)=-tg α
tg 180°- tg α=-tg α
tg 180°=0 - значение по таблице Брадиса
То есть:
-tg α =-tg α
Доказано.