Дано: ΔАВС, ВД - высота, АВ=4√6 см, СД=3 см, ∠АВД=30°.
Найти ВС.
Рассмотрим треугольник АВД - прямоугольный по свойству высоты,
АД=1\2 АВ как катет, лежащий против угла 30°, АД=2√6 см.
ВД²=АВ²-АД²=(4√6)²-(2√6)²=96-24=72
ВД=√72
ВС²=ВД²+СД²=(√72)²+9=72+9=81
ВС=√81=9
Ответ: 9 см.
Так как в треугольникеМКН уголК=90 градусов и угол М=45 градусов то угол N =45 градусов Если при основании треугольника углы одинаковые то этот треугольник равнобедренный значит МN=4:2=2
т КМ=NK=4
<span><span>если нижнее основание а, верхнее b, и искомый отрезок - длины х, то прощади трапеций будут такие
S1 = (b + x)*h1/2; S2 = (a + x)*h2/2;
или, поскольку S1 = S2,
(b + x)/(a + x) = h2/h1;
Чтобы получить соотношение между h1 и h2, проведем прямую,
параллельную боковой стороне через конец отрезка х, лежащий на ДРУГОЙ
боковой стороне.
Малое основание продолжим до пересечения с этой прямой. Получилось 2
подобных треугольника с основаниями (x - b) и (a - x); из подобия
следует
h2/h1 = (a - x)/(x - b);
поскольку соответствующие высоты так же пропорциональны, как и стороны.
Итак, имеем уравнение для х
(b + x)/(a + x) = (a - x)/(x - b);
x^2 - b^2 = a^2 - b^2;
x = корень((a^2 + b^2)/2);
Подставляем численные значения, получаем
х = корень(24^2 + 7^2) = 25;</span></span>
Ac/a1c1=8/16=1/2-коэффициент подобия
тогда
ab/a1b1=1/2
ab=1/2*a1b1=12*1/2=6см
bc/b1c1=1/2
bc=1/2*b1c1=14*0.5=7см