Ответ: (3;-9).
Объяснение:
Нехай координати точки А(x₁;y₁), а точки В(x₂;y₂). Координати вектора АВ: AB = {x₂ - x₁; y₂ - y₁}
В даному випадку: a = {-3;7}, тоді {-3; 7} = {0 - x₁; -2 - y₁}. Прирівнюючи відповідні координати, отримаємo x₁ = 3; y₁ = -9
Координати точки А - (3;-9).
<span> По условию <em>произведение <u>последней цифры</u> числа на оставшуюся часть равно 105</em>. Из этого следует, что предпоследняя цифра – 5. Третья не может быть 5 ( иначе произведение <u>первой цифры</u> числа на на оставшуюся часть заканчивалось бы на 0 или 5). </span>
<span> Первая цифра – <em>1</em>, т.к. любая другая при умножении на оставшуюся часть, которая начинается на 5, НЕ давала бы в результате двузначное число 57. </span>
Итак, первая цифра 1, вторая – 5, третья– 7.
1•57=57
7•15=105
Пусть CD=x, тогда АС=3х.
Площадь прямоугольного треугольника ACD равна половине произведения катетов
C другой стороны, можно вычислить площадь как половинe произведения основания АС на высоту DH.
Поэтому
AD·DC = AC· DH
16·x=3·x·DH ⇒ DH=16/3
Второй способ.
<span>Из прямоугольного треугольника АСД
sin </span>∠<span> А = СD/ АС= 1/3.
Из прямоугольного треугольника АНD:
sin</span>∠<span> А = НD/АD
Поэтому НD=АD</span>·<span> sin </span>∠<span>A=16</span>·(<span>1/3)= 16/3
</span>
Ответ. HD=16/3
Пусть дана окружность радиуса R с центром в точке О и внутри её точка <span>N.
Вычертим отдельно условный равнобедренный треугольник ОАВ и на стороне АВ точка </span>N. ОА и ОВ - это радиусы.
Проведём отрезок ОN, равный расстоянию d от центра до точки <span>N.
Из центра опустим перпендикуляр Оh на сторону АВ.
По условию задания А</span>N:В<span>N = 3:4. Примем коэффициент пропорциональности за х.
Тогда А</span>N = 3х, а В<span>N = 4х. Перпендикуляр Оh делит АВ пополам.
Составляем уравнения из треугольников ONA и Оh</span><span>N.
</span>Оh² = R²-(3.5x)² = R²-12,25x².
Oh² = d²-(0,5x)² = d²-0,25x², отсюда вытекает R²-12,25x²<span> = d²-0,25x².
Приведём подобные: 12x</span>² = R²-d².
Находим коэффициент х =√((R²-d²)/12) = √(R²-d²)/2√3.
Можно определить длину отрезка АN = 3x = 3√(R²-d²)/2√3 = <span>√(3(R²-d²))/2.
Теперь в треугольнике OAN известны 3 стороны, поэтому находим по теореме косинусов косинус угла AON, а по нему и сам угол.
Ответ: от отрезка ON откладываем найденный угол </span><span>AON, проводим радиус ОА и через точки A и N проводим искомую хорду АВ.</span>