А: Площадь основания So = a*h/2, где a - основание треугольника - по условию 4 см, h - высота правильного треугольника h = a*корень(3)/2 = 2*корень(3). Таким образом, искомая площадь основания So = 4*2*корень(3)/2 = 4*корень(3) или примерно 7 см2
Б: Площадь боковой пов. Sб = 3*a*p/2, где a*p/2 - площадь одной боковой треугольной грани, a - основание треугольника (4 см), p - высота треугольника (апофема = 8 см). Искомая площадь Sб = 3*4*8/2 = 48 см2
В: Объем пирамиды V = h*So/3, где h - высота пирамиды (6 см), So - уже найденная площадь ее основания (4*корень(3) см). Искомый объем V = 6*4*корень(3) = 24*корень(3) или примерно 41.5 см3
<span> Пусть один из углов при основании будет равен а. тогда рассматриваем треугольник adc, где угол d= углу d (дано). Составляем уравнение а + а + а/2 = 180 град. (сумма всех углов треугольника равна 180 град. 2а + а/2 = 180 град. 4а + а = 180 град. 5а = 180 град. а = 72 град. => угол ВАС = углу ВСА = 72 град. Рассмотрим треугольник АВС. Так как сумма всех углов равна 180 град. => угол АВС = 180 град. – (72 град. + 72 град.) = 36 град. Ответ: 72 град., 72 град., 36 град.</span>
Если будут вопросы - напиши в комментарии, я постараюсь понятно все объяснить
Общая хорда двух окружностей перпендикулярна линии центров. Линия центров соединяет середины сторон четырехугольника и является стороной параллелограмма Вариньона (параллельна диагонали четырехугольника).
Вертикальные углы равны, поэтому сумма углов MOD и EOC (тоже вертикальных, и также образованных пересечением прямых MC и DE) будет равна: 360о-204о=156о
Угол MOD равен: 156о/2=78о
Ответ: 78о