а) площади относятся,как произведения сторон,создающих этот угол(S=(1/2*ab*sin∠)
б)площади относятся,как высоты(S=a*h/2)
в)площади относятся,как основания
г)отношение площадей равно квадрату коэффициента подобия((S1/S2=k²)
Треугольники ABC и KBM подобны с коэффициентом подобия 2. Площади подобных фигур относятся как квадрат коэффициента подобия. Поэтому площадь треугольника ABC равна 40
Площадь круга находят по формуле S =πr² Радиус вписанного в треугольник круга можно найти по формуле r=S:p, где S- площадь треугольника, р- его полупериметр. р=(10+24+26):2=30Площадь треугольника найдем по формуле Герона:S=√{(p−a)(p−b)(p−c)}, где р- полупериметр треугольника, а, b и с - его стороны.
S=√(30•20•6•4)= √(6•5•5•4•6•4)=6•5•4=120r=120:30=4 см S =16π см²-------Радиус найти будет проще, если заметить, что отношение сторон этого треугольника из так называемых Пифагоровых троек, а именно 10:24:26=5:12:13 Это отношение сторон прямоугольного треугольника. Тогда по формуле радиуса вписанной в прямоугольный треугольник окружности r=(a+b-c):2, где а, b - катеты, с - гипотенуза:r=(10+24-26):2=4 cм. Площадь круга, естественно. будет та же - 16π см²