См. рисунок. Плоскость синего цвета параллельна осевому сечению цилиндра, в ней и находится отрезок АВ. Найти расстояние от отрезка АВ до оси - это найти расстояние от хорда АК до диаметра ( см второй рисунок)
Хорда АК находится по теореме Пифагора АК²=АВ²-ВК²=13²-5²=
=(13-5)(13+5)=8·18=144=12²
АК=12 м
Чтобы найти расстояние надо найти высоту равнобедренного треугольника, боковые стороны которого равны радиусам - 10 м
Проведем высоту в этом треугольнике, получим прямоугольный треугольник и
по теореме Пифагора
h²=10²-6²=100-36=64=8²
Ответ 8 см
4х+5х+6х=180
15х=180. х=180:15
х=12.
угол1=12*4=48
угол2=5*12=60
угол3=6*12=72.