х-возраст Веры
х+7-возраст Наташи
х+4-возраст Веры через 4 года
х+7+4=х+11-возраст Наташи через 4 года
11-4=7 лет старше Наташа через 4 года
4(x-3/4)=4x-3 1,8(x-5)=1,8x-9 3/8(x+4/5)=3/8x+3/10 3(x+1,6)=3x+4,8
X=-3, y=-4 => <span>5*(-4)+3|2-(-3)|=-20+3*5=-5</span>
P=(a+b)*2
a=P:2-b
1)152:2-16=60(см)-а
S=a*b
2)60*16=960(см)
Докажем, что при любом натуральном и выражение А(n) = 4n + 15n - 1 кратно 9.
Используем стандартную схему доказательства:
1. При n = 1 выражение A(1) = 41 + 15 · 1 - 1 = 18 кратно 9.
2. Предположим, что при n = k выражение А(k) = 4k + 15k - 1 кратно 9, т. е. 4k + 15k - 1 = 9р (где р - натуральное число).
3. При n = k + 1 надо доказать, что выражение А(k +1) = 4k+1 + 15(k + 1) - 1 делится на 9. Для доказательства можно использовать два способа.
1-й способ. Поступим, как и в примере 1, т. е. выделим в выражении А(k + 1) часть А(k), которая делится на 9. Для этого преобразуем выражение А(k + 1) к виду А(k +1) = 4k+1 + 15k + 14 = 4(4k + 15k - 1) – 45k + 18 = 4 А(k) + 9(2 – 5k).
Видно, что выражение А(k + 1) является суммой двух слагаемых, каждое из которых делится на 9.
Сложность этого способа состоит в умении в выражении А(k + 1) выделить часть А(k), т. е. догадаться до преобразования 4k+1 + 15k + 14 = 4(4k + 15k - 1) – 45k + 18.
Поэтому рассмотрим другой способ, лишенный такого недостатка.
2-й способ. Из выражения 4k + 15k - 1 = 9р (пункт 2) найдем 4k = 9р + 1 – 15k и подставим в выражение А(k +1) = 4k+1 + 15k + 14 = 4(9p + 1 – 15k) + 15k + 14 = 36p + 18 – 45k. Видно, что выражение A(k + 1) состоит из трех слагаемых, каждое из которых делится на. 9.
Связь между пунктами 2 и 3 была обеспечена за счет того, что в пункте 2 была найдена величина 4k и подставлена в выражение пункта 3.
Заметим, что если на число п накладываются по условию задачи ограничения, то необходимо ввести новое натуральное число т и свести задачу к старой схеме.