Cos7x - cosx = 0
- 2sin(7x + x)/2 * sin(7x - x)/2 = 0
sin4x * sin3x = 0
1) sin4x = 0
4x = πk, k∈Z
x₁ = πk/4, k∈z
2) sin3x = 0
3x = πn, n∈Z
x₂ = πn/3, n∈Z
x2+22x+72=0
D= b2 - 4ac = 22^2 - 72*4 = 196 > 0; 2 корня
х1= (- b + корень из D) : 2= (-22+14) : 2 = -4
х2 = (- b - корень из D) : 2 = (-22-14) : 2 = -18
Ответ: x2+22x+72 = (х+4) (х+8)
▪25% от 3^3 × 2^4 × (1/6)^2 = 25% × 3^3 × 2^4 × (1/6)^2 = 25/100 × 27× 16 × 1/36 = 1/4 × 27× 16 × 1/36 = (27×16)/(4×36) = (3×4)/4 = 3
▪25% от (2/3)^4 × 27 × (3/4)^2 = 25% × (2/3)^4 × 27 × (3/4)^2 = 1/4 × 16/81 × 27 × 9/16 = (16×27×9)/(4×81×16) = (1×3×1)/(4×1×1) = 3/4 = 0,75
▪25% от (1/2)^4 × (4^3)^4 = 25% × (1/2)^4 × (4^3)^4 = 1/4 × 1/16 × 4^12 = 4^12/64 = 4^12/4^3 = 4^9 = 262144