Проще нарисовать фигуру на координатной плоскости.Остальное- в решении объяснила.
Это первая задача, думаю хоть что- то понятно)
Теорема синусов:
AC/sin ABC = AB/sin BCA
sin BCA= sin ABC * AB / AC =
* 20 /10
=
= 45
точка О, принадлежащая плоскости - середина отрезка АВ
О = 1/2(А+В) = 1/2((7; -3; 4) +(-1; 1; 2)) = 1/2(6;-2;6) = (3;-1;3)
Вектор нормали к плоскости
ОА = А - О = (7; -3; 4) - (3;-1;3) = (4;-2;1)
уравнение плоскости, проходящей через точку М(х₀, у₀, z₀) с вектором нормали (A, B, C)
A(x – x₀) + B(y – y₀) + C(z – z₀) = 0
В нашем случае
4(x – 3) - 2(y + 1) + 1(z – 3) = 0
4x - 12 - 2y - 2 + z - 3 = 0
4x - 2y + z - 17 = 0
Прямоугольный треугольник: а и b - катеты, с-гипотенуза, h -высота , делящая гипотенузу на две части с1 и с2. S1=96см², S2=54см².
Площадь прямоугольного треугольника S=1/2*ab. S=S1+S2=96+54=150
ab=2S=2*150=300см².
<span>В прямоугольном треугольнике формула длины высоты через стороны:
</span>h=ab/c, с=ab/h=300/h
Найдем высоту h=√c1c2
S1=1/2*hc1, c1=2S1/h=2*96/h=192/h
S2=1/2*hc2, c2=2S2/h=2*54/h=108/h
Подставим: h=√192/h*108/h.
h=144/h
h=√144=12см
Гипотенуза равна с=300/h=300/12=25см